职业考试 | 在线试题 | 作文辅导 | 范文大全 | 中小学教育 | 试题教案课件

当前位置:得高分网中小学教学初中教育中考复习中考数学复习资料圆概念、知识点及练习题

中考数学复习资料

当前:首页 >> 圆概念、知识点及练习题

圆概念、知识点及练习题

日期:10-31 19:43:16 | 中考数学复习资料 | 浏览次数: 496 次 | 收藏

标签:中考数学复习资料,http://www.gaofen123.com 圆概念、知识点及练习题,

  【性质与概念】

  概念:

  1 在同一平面内,到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心。图形一周的长度,就是圆的周长。

  2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r

  3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。直径所在的直线是圆的对称轴。

  4 连接圆上任意两点的线段叫做弦.最长的弦是直径。

  5 圆上任意两点间的部分叫做圆弧,简称弧.大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。优弧是大于180度的弧,劣弧是小于180度的弧。

  6 由圆心角的两条半径和圆心角所对应的一段弧围成的图形叫做扇形。

  7 由弦和它所对的一段弧围成的图形叫做弓形。

  8 顶点在圆心上的角叫做圆心角。

  9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

  10 圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用字母π表示,π=3.14159265……计算时通常取3.14。我们可以说圆的周长是直径的π倍,或大约3.14倍,不能直接说圆的周长是直径的3.14倍!

  11圆周角等于相同弧所对的圆心角的一半。

  12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。

  13 把圆分成若干等份,可以拼成一个近似的长方形。长方形的长相当于圆的半径。

  字母表示:

  圆—⊙ ;半径—r或R(在环形圆中外环半径表示的字母); 弧—⌒ ;直径—d ;

  扇形弧长—L ; 周长—C ; 面积—S。

  计算公式:

  1.圆的周长C=2πr=或C=πd

  2.圆的面积S=πr²

  3.扇形弧长L=圆心角(弧度制) * r = nπr/180(n为圆心角)

  4.扇形面积S=nπ r²/360=Lr/2(L为扇形的弧长)

  5.圆的直径 d=2r

  6.圆锥侧面积 S=πrl(l为母线长)

  7.圆锥底面半径 r=n/360L(L为母线长)(r为底面半径)

  位置关系:

  1)点和圆位置关系

  ①P在圆O外,则 PO>r。

  ②P在圆O上,则 PO=r。

  ③P在圆O内,则 PO

  反过来也是如此。

  2)直线和圆位置关系

  ①直线和圆无公共点,称相离。 AB与圆O相离,d>r。

  ②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d

  ③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)

www.gaofen123.com

  平面内,直线Ax+By+C=0与圆x²+y²+Dx+Ey+F=0的位置关系判断一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x²+y²+Dx+Ey+F=0,即成为一个关于x的方程

  如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

  如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

  如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

  2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x²+y²+Dx+Ey+F=0化为(x-a)²+(y-b)²=r²令y=b,求出此时的两个x值x1、x2,并且规定x1

  当x=-C/Ax2时,直线与圆相离;

  当x1

  3)圆和圆位置关系

  ①无公共点,一圆在另一圆之外叫外离,在之内叫内含。

  ②有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。

  ③有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

  设两圆的半径分别为R和r,且R〉r,圆心距为P,则结论:外离P>R+r;外切P=R+r;内含P

  内切P=R-r;相交R-r

  性质:

  ⑴圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

  ⑵有关圆周角和圆心角的性质和定理

  ① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

  ②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。

  直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

  圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。

  即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

  ③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

  ⑶有关外接圆和内切圆的性质和定理

  ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;

  ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

  ③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。

  ④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)

  ⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

  (4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。

  (5)弦切角的度数等于它所夹的弧的度数的一半。

  (6)圆内角的度数等于这个角所对的弧的度数之和的一半。

  (7)圆外角的度数等于这个角所截两段弧的度数之差的一半。

  (8)周长相等,圆面积比正方形、长方形、三角形的面积大。

  相关定理:

  1)与切线有关的定理

  垂直于过切点的半径;经过半径的外端点,并且垂直于这条半径的直线,是这个圆的切线。

  切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。

  切线的性质:(1)经过切点垂直于过切点的半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。

  切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。

  切割线定理圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于A B两点 , 则有pC^2=pA·pB

  割线定理与切割线定理相似 两条割线交于p点,割线m交圆于A1 B1两点,割线n交圆于A2 B2两点,则pA1·pB1=pA2·pB2。

  2)垂径定理

  垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。

  方程:

  1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

  特别地,以原点为圆心,半径为r(r>0)的圆的标准方程为x^2+y^2=r^2。

  2、圆的一般方程:方程x^2+y^2+Dx+Ey+F=0可变形为(x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4.故有:

  (1)、当D^2+E^2-4F>0时,方程表示以(-D/2,-E/2)为圆心,以(√D^2+E^2-4F)/2为半径的圆;

  (2)、当D^2+E^2-4F=0时,方程表示一个点(-D/2,-E/2);

  (3)、当D^2+E^2-4F<0时,方程不表示任何图形。

  3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是 x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数)

  圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为 (x-a1)(x-a2)+(y-b1)(y-b2)=0

  圆的离心率e=0,在圆上任意一点的曲率半径都是r。

  经过圆 x^2+y^2=r^2上一点M(a0,b0)的切线方程为 a0*x+b0*y=r^2

  在圆(x^2+y^2=r^2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0*x+b0*y=r^2。

  【练习题】

  选择题:

  1.下列结论正确的是( )

  A.弦是直径 B.弧是半圆 C.半圆是弧 D.过圆心的线段是直径

  2.下列说法正确的是( )

  A.一个点可以确定一条直线 B.两个点可以确定两条直线

  C.三个点可以确定一个圆 D.不在同一直线上的三点确定一个圆

  3.圆是轴对称图形,它的对称轴有 ( )

  A.一条 B 两条 C.一条 D.无数条

  填空题:

  4.圆上各点到圆心的距离都等于______, 到圆心距离等于半径的点都在______.

  5.若圆的一条弦长为该圆的半径等于12cm,其弦心距等于______cm.

  【参考答案】

  选择题:

  1.C

  2.D

  3.D

  填空题:

  4.相等,圆上

  5.6√3

TAG:知识点  练习题  

+《圆概念、知识点及练习题》相关文章

相关分类

中考数学复习资料 更新

中考数学复习资料 热门排行